【題目】在平面直角坐標系中,一次函數y=﹣x+2的圖象交x軸、y軸分別于A、B兩點,交直線y=kx于P.
(1)求點A、B的坐標;
(2)若OP=PA,求k的值;
(3)在(2)的條件下,C是線段BP上一點,CE⊥x軸于E,交OP于D,若CD=2ED,求C點的坐標.
科目:初中數學 來源: 題型:
【題目】州政府投資3個億擬建的恩施民族高中,它位于北緯31°,教學樓窗戶朝南,窗戶高度為h米,此地一年的冬至這一天的正午時刻太陽光與地面的夾角最小為α,夏至這一天的正午時刻太陽光與地面的夾角最大為β.若你是一名設計師,請你為教學樓的窗戶設計一個直角形遮陽蓬BCD,要求它既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(如圖).根據測量測得∠α=32.6°,∠β=82.5°,h=2.2米.請你求出直角形遮陽蓬BCD中BC與CD的長各是多少?(結果精確到0.1米)
(參考數據:sin32.6°=0.54,sin82.5°=0.99,tan32.6°=0.64,tan82.5°=7.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發生,許多道路在事故易發路段設置了區間測速如圖,學校附近有一條筆直的公路l,其間設有區間測速,所有車輛限速40千米/小時數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區間測速.在l外取一點P,作PC⊥l,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速.(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在半徑為5的⊙O中,弦AB=8,P是弦AB所對的優弧上的動點,連接AP,過點A作AP的垂線交射線PB于點C,當△PAB是等腰三角形時,線段BC的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點,F是CD上一點,AE⊥EF.有下列結論:①∠BAE=30°;②射線FE是∠AFC的角平分線;③AE2=ADAF;④AF=AB+CF.其中正確結論為是______.(填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax22a2x(a0)的對稱軸與x軸交于點P.
(1)求點P的坐標(用含a的代數式表示);
(2)記函數y=x+2(1x
2)的圖象為圖形M,若拋物線與圖形M恰有一個公共點,結合函數的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(0,1).
(1)畫出△ABC向右平移3個單位長度所得的△A1B1C1;寫出C1點的坐標;
(2)畫出將△ABC繞點B按逆時針方向旋轉90°所得的△A2B2C2;寫出C2點的坐標;
(3)在(2)的條件下求點A所經過路徑的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】劉徵是我國古代最杰出的數學家之一,他在《九算術圓田術)中用“割圓術”證明了圓面積的精確公式,并給出了計算圓周率的科學方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術”就是以“圓內接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術”說:割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內接正六邊形的周長為6R,如果將圓內接正六邊形的周長等同于圓的周長,可得圓周率為3.當正十二邊形內接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數據:sinl5°=0.26)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com