【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點M,將 沿CD翻折后,點A與圓心O重合,延長OA至P,使AP=OA,連接PC
(1)求CD的長;
(2)求證:PC是⊙O的切線;
(3)點G為 的中點,在PC延長線上有一動點Q,連接QG交AB于點E.交
于點F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請說明理由.
【答案】
(1)解:如圖,連接OC,
∵ 沿CD翻折后,點A與圓心O重合,
∴OM= OA=
×2=1,CD⊥OA,
∵OC=2,
∴CD=2CM=2 =2
=2
(2)證明:∵PA=OA=2,AM=OM=1,CM= CD=
,∠CMP=∠OMC=90°,
∴PC= =
=2
,
∵OC=2,PO=2+2=4,
∴PC2+OC2=(2 )2+22=16=PO2,
∴∠PCO=90°,
∴PC是⊙O的切線
(3)解:GEGF是定值,證明如下,
連接GO并延長,交⊙O于點H,連接HF
∵點G為 的中點
∴∠GOE=90°,
∵∠HFG=90°,且∠OGE=∠FGH
∴△OGE∽△FGH
∴ =
∴GEGF=OGGH=2×4=8.
【解析】(1)利用翻折性質可得出AM=MO=半徑的一半,運用勾股定理可求出;(2)連OC,證垂直,可利用勾股定理逆定理,得出∠PCO=90°,即得切線;(3)利用△OGE∽△FGH把GEGF轉化為OGGH=8定值.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(1,0),C(3,0),D(3,4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發,沿線段AB向點B運動.同時動點Q從點C出發,沿線段CD向點D運動.點P,Q的運動速度均為每秒1個單位.運動時間為t秒.過點P作PE⊥AB交AC于點E.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)過點E作EF⊥AD于F,交拋物線于點G,當t為何值時,△ACG的面積最大?最大值為多少?
(3)在動點P,Q運動的過程中,當t為何值時,在矩形ABCD內(包括邊界)存在點H,使以C,Q,E,H為頂點的四邊形為菱形?請直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】動手操作:
如圖,已知AB∥CD,點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以點E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
問題解決:
(1)若∠ACD=78°,求∠MAB的度數;
(2)若CN⊥AM,垂足為點N,求證:△CAN≌△CMN.
實驗探究:
(3)直接寫出當∠CAB的度數為多少時?△CAM分別為等邊三角形和等腰直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD的對角線AC、BD相交于點O,OB=OD,BF=DE,AE∥CF.
(1)求證:△OAE≌△OCF;
(2)若OA=OD,猜想:四邊形ABCD的形狀,請證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年西寧市高中招生體育考試測試管理系統的運行,將測試完進行換算統分改為計算機自動生成,現場公布成績,降低了誤差,提高了透明度,保證了公平.考前張老師為了解全市初三男生考試項目的選擇情況(每人限選一項),對全市部分初三男生進行了調查,將調查結果分成五類:A、實心球(2kg);B、立定跳遠;C、50米跑;D、半場運球;E、其它.并將調查結果繪制成以下兩幅不完整的統計圖,請你根據統計圖解答下列問題:
(1)將上面的條形統計圖補充完整;
(2)假定全市初三畢業學生中有5500名男生,試估計全市初三男生中選50米跑的人數有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B、立定跳遠;C、50米跑;D、半場運球中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點P是OA上的一動點,點N(6,0)是OB上的一定點,點M是ON的中點,∠AOB=30°,要使PM+PN最小,則點P的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C是線段AB上的一點,分別以AC.BC為邊在AB的同側作正方形ACDE和正方形CBFG,連接EG.BG.BE,當BC=1時,△BEG的面積記為S1,當BC=2時,△BEG的面積記為S2,……,以此類推,當BC=n時,△BEG的面積記為Sn,則S2020-S2019的值為____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com