【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉.
(1)當三角板旋轉到圖1的位置時,猜想CE與AF的數量關系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數;
(3)若BC= 4,點M是邊AB的中點,連結DM,DM與AC交于點O,當三角板的一邊DF與邊DM重合時(如圖2),若OF=,求CN的長.
【答案】(1)CE=AF;證明見解析;(2)135°;(3).
【解析】試題分析: (1)由正方形額等腰直角三角形的性質判斷出△ADF≌△CDE即可;
(2)設DE=k,表示出AE,CE,EF,判斷出△AEF為直角三角形,即可求出∠AED;
(3)由AB∥CD,得出,求出DM,DO,再判斷出△DFN∽△DCO,得到
,求出DN即可.
試題解析:
(1)CE=AF;
證明:在正方形ABCD,等腰直角三角形CEF中,
FD=DE,CD=CA,∠ADC=∠EDF=90°
∴∠ADF=∠CDE,
∴△ADF≌△CDE,
∴CE=AF,
(2)設DE=k,
∵DE:AE:CE=1: :3
∴AE=k,CE=AF=3k,
∴EF=k,
∵AE2+EF2=7k2+2k2=9k2,AF2=9k2,
即AE2+EF2=AF2
∴△AEF為直角三角形,
∴∠BEF=90°
∴∠AED=∠AEF+DEF=90°+45°=135°;
(3)∵M是AB中點,
∴MA=AB=
AD,
∵AB∥CD,
∴,
在Rt△DAM中,DM=,
∴DO=,
∵OF=,
∴DF=,
∵∠DFN=∠DCO=45°,∠FDN=∠CDO,
∴△DFN∽△DCO,
∴,
∴ ,
∴DN=,
∴CN=CD-DN=4-=
.
科目:初中數學 來源: 題型:
【題目】小明媽媽經營一家服裝專賣店,為了合理利用資金,小明幫媽媽對上個月各種型號的服裝銷售數量進行了一次統計分析,決定在這個月的進貨中多進某種型號服裝,此時小明應重點參考( )
A. 眾數 B. 平均數 C. 加權平均數 D. 中位數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店試銷一種新商品,該商品的進價為40元/件,經過一段時間的試銷發現,每月的銷售量會因售價在40~70元之間的調整而不同。當售價在40~50元時,每月銷售量都為60件;當售價在50~70元時,每月銷售量與售價的關系如圖所示,令每月銷售量為y件,售價為x元/件,每月的總利潤為Q元。
(1)當售價在50~70元時,求每月銷售量為y與x的函數關系式?
(2)當該商品售價x是多少元時,該商店每月獲利最大,最大利潤是多少元?
(3)若該商店每月采購這種新商品的進貨款不低于1760元,則該商品每月最大利潤為 元。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com