【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結論.
【答案】(1)△ABE≌△AD′F;(2)四邊形AECF是菱形.
【解析】
試題分析:(1)根據平行四邊形的性質及折疊的性質我們可以得到∠B=∠D′,AB=AD′,∠1=∠3,從而利用ASA判定△ABE≌△AD′F;
(2)四邊形AECF是菱形,我們可以運用菱形的判定,有一組鄰邊相等的平行四邊形是菱形來進行驗證.
試題解析:(1)證明:由折疊可知:∠D=∠D′,CD=AD′,
∠C=∠D′AE.
∵四邊形ABCD是平行四邊形,
∴∠B=∠D,AB=CD,∠C=∠BA D.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠3.
∴∠1=∠3.
又∠B=∠D′,AB=AD′
∴△ABE≌△AD′F(ASA).
(2)解:四邊形AECF是菱形.
證明:由折疊可知:AE=EC,∠4=∠5.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠5=∠6.
∴∠4=∠6.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四邊形AECF是平行四邊形.
又∵AF=AE,
∴平行四邊形AECF是菱形.
科目:初中數學 來源: 題型:
【題目】近視眼鏡的度數 (度)與鏡片焦距
(m)成反比例。已知200度的近視眼鏡鏡片的焦距為0.5 m。求:
(1) 關于
的函數解析式;
(2)300度近視眼鏡鏡片的焦距。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長為1個單位長度.平面直角坐標系的原點O在格點上,
軸、
軸都在網格線上.線段AB的端點A、B在格點上.
(1)將線段AB繞點O逆時針90°得到線段A1B1,請在圖中畫出線段A1B1;
(2)在(1)的條件下,線段A2B2與線段A1B1關于原點O成中心對稱,請在圖中畫出線段A2B2;
(3)在(1)、(2)的條件下,點P是此平面直角坐標系內的一點,當以點A、B、B2、P為頂點的四邊形是平行四邊形時,請直接寫出點P的坐標: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點P是三角形右外一點,且∠APB=∠ABC.
(1)如圖1,若∠BAC=60°,點P恰巧在∠ABC的平分線上,PA=2,求PB的長;
(2)如圖2,若∠BAC=60°,探究PA,PB,PC的數量關系,并證明;
(3)如圖3,若∠BAC=120°,請直接寫出PA,PB,PC的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,正方形ABCD中,點O是對角線AC的中點,點P是線段AO上(不與A、O重合)的一個動點,過點P作PE⊥PB且PE交邊CD于點E.
(1)求證:PB=PE;
(2)過點E作EF⊥AC于點F,如圖2.若正方形ABCD的邊長為2,則在點P運動的過程中,PF的長度是否發生變化?若不變,請直接寫出這個不變的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市需調查該市九年級男生的體能狀況,為此抽取了50名九年級男生進行引體向上個數測試,測試情況繪制成表格如下:
個數 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人數 | 1 | 1 | 6 | 18 | 10 | 6 | 2 | 2 | 1 | 1 | 2 |
(1)求這次抽樣測試數據的平均數、眾數和中位數;
(2)在平均數、眾數和中位數中,你認為用哪一個統計量作為該市九年級男生引體向上項目測試的合格標準個數較為合適?簡要說明理由;
(3)如果該市今年有3萬名九年級男生,根據(2)中你認為合格的標準,試估計該市九年級男生引體向上項目測試的合格人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=,OC=
,則另一直角邊BC的長為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com