日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】已知:O上兩個(gè)定點(diǎn)A,B和兩個(gè)動(dòng)點(diǎn)C,D,ACBD交于點(diǎn)E.

(1)如圖1,求證:EAEC=EBED

(2)如圖2,AB=BCADO的直徑,求證:ADAC=2BDBC

(3) 如圖3,若ACBD,點(diǎn)OAD的距離為2,求BC的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3) BC =4.

【解析】

1)根據(jù)同弧所對(duì)的圓周角相等得到角相等,從而證得三角形相似,于是得到結(jié)論;
2)如圖2,連接CDOBAC于點(diǎn)FB是弧AC的中點(diǎn)得到∠BAC=ADB=ACB,且AF=CF=0.5AC.證得CBF∽△ABD.即可得到結(jié)論;
3)如圖3,連接AO并延長(zhǎng)交OF,連接DF得到AFO的直徑于是得到∠ADF=90°,過(guò)OOHADH,根據(jù)三角形的中位線定理得到DF=2OH=4,通過(guò)ABE∽△ADF,得到1=2,于是結(jié)論可得.

(1)證明:∵∠EAD=EBC,∠BCE=ADE
∴△AED∽△BEC
=
EAEC=EBED
(2)證明:如圖2,連接CDOBAC于點(diǎn)F

B是弧AC的中點(diǎn),
∴∠BAC=ADB=ACB,且AF=CF=0.5AC.
又∵ADO直徑,
∴∠ABD=90°,又∠CFB=90°.
∴△CBF∽△ABD.
=,故CFAD=BDBC.
ACAD=2BDBC
(3)如圖3,連接AO并延長(zhǎng)交OF,連接DF,


AFO的直徑,
∴∠ADF=90°
過(guò)OOHADH
AH=DH,OHDF
AO=OF
DF=2OH=4
ACBD
∴∠AEB=ADF=90°
∵∠ABD=F
∴△ABE∽△ADF
∴∠1=2
∴弧BC=DF
BC=DF=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程有兩個(gè)正整數(shù)根是正整數(shù)的三邊a、b、c滿足

求:的值;

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)踐操作

如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫(xiě)作法)

1)①作的平分線,交于點(diǎn);②以為圓心,為半徑作圓.

綜合運(yùn)用

在你所作的圖中,

2與⊙的位置關(guān)系是   ;(直接寫(xiě)出答案)

3)若,求⊙的半徑.

4)在(3)的條件下,求以為軸把ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)EF分別在BCCD上,AE = AF

1)求證:BE = DF

2)連接ACEF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EMFM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已矩形ABCD的頂點(diǎn)AD分別在x軸、y軸上,,則C點(diǎn)坐標(biāo)為(

A. B. C. 3,5D. 4,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是邊長(zhǎng)為1的正方形ABCD的對(duì)角線BD上一動(dòng)點(diǎn),點(diǎn)E從點(diǎn)B向點(diǎn)D運(yùn)動(dòng)(與點(diǎn)BD不重合),過(guò)點(diǎn)E作直線GHBC,交AB于點(diǎn)G,交CD于點(diǎn)HEFAE,交CD(CD的延長(zhǎng)線)于點(diǎn)F.

(1)如圖①,求證:△AGE≌△EHF.

(2)在點(diǎn)E的運(yùn)動(dòng)過(guò)程中(如圖①,②),四邊形AFHG的面積是否會(huì)發(fā)生變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABD△GDF都是等腰直角三角形,BDDF均為斜邊(BD<DF).

(1)如圖1,B,D,F(xiàn)在同一直線上,過(guò)FMF⊥GF于點(diǎn)F,取MF=AB,連結(jié)AMBF于點(diǎn)H,連結(jié)GA,GM.

求證:AH=HM;

請(qǐng)判斷△GAM的形狀,并給予證明;

請(qǐng)用等式表示線段AM,BD,DF的數(shù)量關(guān)系,并說(shuō)明理由.

(2)如圖2,GD⊥BD,連結(jié)BF,取BF的中點(diǎn)H,連結(jié)AH并延長(zhǎng)交DF于點(diǎn)M,請(qǐng)用等式直接寫(xiě)出線段AM,BD,DF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:

其中正確的個(gè)數(shù)是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+6經(jīng)過(guò)點(diǎn)A(﹣30)和點(diǎn)B20),直線yhh為常數(shù),且0h6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F

1)求拋物線的解析式;

2)連接AE,求h為何值時(shí),△AEF的面積最大.

3)已知一定點(diǎn)M(﹣20),問(wèn):是否存在這樣的直線yh,使△BDM是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 午夜视频 | 日韩激情二区 | 成人av福利| 亚洲一区在线观看视频 | 青青草免费在线视频 | 国产成人免费视频 | 欧美一级免费在线观看 | 99re6热只有精品免费观看 | 国产精品一区二区久久乐夜夜嗨 | 婷婷色5月 | 成人精品在线 | 日韩欧美国产精品一区二区三区 | 国产精品视频 | 久久涩涩| 青草青在线视频 | 久久久亚洲天堂 | 自拍偷拍第一页 | 99久久久国产精品免费蜜臀 | 国产毛片在线 | 国产一级片在线播放 | 欧美精品99 | 91精品国产高清一区二区三区 | 亚洲最大的黄色网 | 国产在线1| 成人精品视频 | 欧美日韩国产精品久久久久 | 久久久精品 | av在线播放一区二区 | 97国产免费 | 中文字幕在线视频免费播放 | 日韩一区二区精品视频 | 自拍偷拍欧美日韩 | 成人a视频在线观看 | 免费一区 | 四虎国产成人永久精品免费 | 狠狠色综合网站久久久久久久 | 久草视频在线资源 | 99在线看| 国产精品久久精品 | 国产精品久久久久久久久久久免费看 | 午夜精品一区二区三区在线播放 |