如圖9, 已知拋物線與軸交于A (-4,0) 和B(1,0)兩點,與
軸交于C(0,-2)點.
【小題1】求此拋物線的解析式;
【小題2】設G是線段BC上的動點,作GH//AC交AB于H,連接CF,當△BGH的面積是△CGH面積的3倍時,求H點的坐標;
【小題3】若M為拋物線上A、C兩點間的一個動點,過M作軸的平行線,交AC于N,當M點運動到什么位置時,線段MN的值最大,并求此時M點的坐標
【小題1】設二次函數解析式為y=a(x-x1)(x-x2)
∵二次函數與軸交于
、
兩點可得:
∴x1 =-4 x2=1……………………………………………….1分
∴y=a(x+4)(x-1)
把C(0,-2)代入y=a(x+4)(x-1)得:a=
故所求二次函數的解析式為y= (x+4)(x-1)
=x2+
x-2.
【小題2】∵S△BGH ="2" S△CGH……………………………………………4分
∵GH//AC, , ∴△BGH~△BAC,
……………6分
故E點的坐標為(,0). ………………………….7分
【小題3】若設直線的解析式為
∵ A、兩點的坐標分別為(-4,0)、(0,-2).
則有 解得:
故直線的解析式為
.……………………8分
若設M點的坐標為,又N點是過點M所作
軸的平行線與直線
的交點,則N點的坐標為(
.則有:
MN==
=……………………………………….9分
即當時,線段MN取大值,此時M點的坐標為(-2,-3)…………10分
解析
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com