日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

(1)觀察發現
如圖(1):若點A、B在直線m同側,在直線m上找一點P,使AP+BP的值最小,做法如下:
作點B關于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.
如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:
作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     
(2)實踐運用
如圖(3):已知⊙O的直徑CD為2,的度數為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為     
(3)拓展延伸
如圖(4):點P是四邊形ABCD內一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

解:(1)=
(2)
(3)拓展延伸:作圖如下:

解析分析:(1)觀察發現:利用作法得到CE的長為BP+PE的最小值:
∵在等邊三角形ABC中,AB=2,點E是AB的中點
∴CE⊥AB,∠BCE=∠BCA=30°,BE=1。
∴CE=BE=
(2)實踐運用:過B點作弦BE⊥CD,連結AE交CD于P點,連結OB、OE、OA、PB,根據垂徑定理得到CD平分BE,即點E與點B關于CD對稱,則AE的長就是BP+AP的最小值:
∵BE⊥CD,∴CD平分BE,即點E與點B關于CD對稱。
的度數為60°,點B是的中點,∴∠BOC=30°,∠AOC=60°。∴∠EOC=30°。
∴∠AOE=60°+30°=90°。
∵OA=OE=1,∴AEOA=
∵AE的長就是BP+AP的最小值,∴BP+AP的最小值是
(3)拓展延伸:分別作出點P關于AB和BC的對稱點E和F,然后連接EF,EF交AB于M、交BC于N。則點M,點N,使PM+PN的值最小。
解:(1)觀察發現:
(2)實踐運用:
如圖,過B點作弦BE⊥CD,連接AE交CD于P點,連接OB、OE、OA、PB,則點P 即為使BP+AP的值最小的點。

BP+AP的最小值是
(3)拓展延伸:作圖如下:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•六盤水)(1)觀察發現
   如圖(1):若點A、B在直線m同側,在直線m上找一點P,使AP+BP的值最小,做法如下:
   作點B關于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:
作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為
3
3

 (2)實踐運用
   如圖(3):已知⊙O的直徑CD為2,
AC
的度數為60°,點B是
AC 
的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為
2
2


  (3)拓展延伸
如圖(4):點P是四邊形ABCD內一點,分別在邊AB、BC上作出點M,點N,使PM+PN+MN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)觀察發現

如圖1,⊙O的半徑為1,點P為⊙O外一點,PO=2,在⊙O上找一點M,使得PM最長.
作法如下:作射線PO交⊙O于點M,則點M就是所求的點,此時PM=
3
3

請說明PM最長的理由.
(2)實踐運用
如圖2,在等邊三角形 ABC中,AB=2,以AB為斜邊作直角三角形AMB,使CM最長.
作法如下:以AB為直徑畫⊙O,作射線CO交⊙O右側于點M,則△AMB即為所求.請按上述方法用三角板和圓規畫出圖形,并求出CM的長度.
(3)拓展延伸
如圖3,在周長為m的任意形狀的△ABC中,分別以AB、AC為斜邊作直角三角形AMB,直角三角形ANC,使得線段MN最長,用尺規畫出圖形,此時MN=
0.5m
0.5m
.(保留作圖痕跡)

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業升學考試(貴州六盤水卷)數學(解析版) 題型:解答題

(1)觀察發現

如圖(1):若點A、B在直線m同側,在直線m上找一點P,使AP+BP的值最小,做法如下:

作點B關于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:

作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     

(2)實踐運用

如圖(3):已知⊙O的直徑CD為2,的度數為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為     

(3)拓展延伸

如圖(4):點P是四邊形ABCD內一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

 

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)觀察發現

   如圖(1):若點A、B在直線m同側,在直線m上找一點P,使AP+BP的值最小,做法如下:

   作點B關于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:

作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為  

 (2)實踐運用

   如圖(3):已知⊙O的直徑CD為2,的度數為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為  

  (3)拓展延伸

如圖(4):點P是四邊形ABCD內一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品久久久久久 | 一区二区免费在线播放 | 丰满少妇久久久久久久 | 欧美日韩不卡 | 日本视频中文字幕 | 在线播放91 | 国产成人久久 | 午夜a级理论片915影院 | 啊v在线 | 99久久久国产精品美女 | 久久国产精品久久久久久 | 免费黄色网址在线播放 | 国产在线第一页 | 色老头在线观看 | 国产精品电影在线观看 | 亚洲国产精品18久久 | 中文字幕精品一区二区三区精品 | 四虎www4hu永久免费 | 黄色免费网站 | 日韩欧美亚洲 | 久久久久久久久久97 | 一级毛片视频播放 | 日韩视频免费 | 97男人的天堂 | 欧美日韩一级二级三级 | 欧美日本一区视频免费 | 91精品国产色综合久久不卡98口 | 国产剧情一区二区 | 国产伦在线 | 精品亚洲一区二区三区四区五区 | 中文字幕第六页 | av一区二区在线观看 | 午夜少妇av| 不卡视频一区 | 国产精品91久久久久 | 蜜桃av网址 | 国产精品久久久久久久久久久久久久 | 亚洲视频在线观看网站 | 国产极品久久 | 久久青青 | 亚洲欧美国产精品久久 |