日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是的中點,CM交AB于點N,若AB=4,求MN•MC的值.
【答案】分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MN•MC;代入數據可得MN•MC=BM2=8.
解答:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.(3分)

(2)證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=AB.(6分)

(3)解:連接MA,MB,
∵點M是的中點,

∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.

∴BM2=MN•MC.
又∵AB是⊙O的直徑,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2
∴MN•MC=BM2=8.(10分)
點評:此題主要考查圓的切線的判定及圓周角定理的運用和相似三角形的判定和性質的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 五月综合婷 | 欧美日韩一二三 | 伊人福利视频 | 人妖 丝袜 另类 亚洲 | 免费黄色的视频 | 三级在线观看 | 成年人在线观看 | 久久久久久亚洲 | 高潮毛片又色又爽免费 | 视频一区 中文字幕 | 国产ts人妖另类 | 男女网站视频 | 精品久久久久一区二区国产 | 在线观看成人网 | 欧美精品久久久久久久监狱 | 特级毛片 | 亚洲一二三区在线观看 | 老师的朋友2 | 91精品国产日韩91久久久久久 | 日韩成人小视频 | 91国产精品 | 国产二区在线播放 | 欧美亚洲专区 | 99re国产 | 精品日韩 | 日韩中文字幕在线观看 | 日韩精品区| 娇小12一13sexvideo| 另类天堂 | 中文字幕一区二区三区不卡 | 国产在线激情 | 男女视频网站 | 日韩在线视频一区二区三区 | 成人在线观看免费视频 | 成人精品一区二区 | 黄色免费观看 | 在线中文字幕视频 | 中文在线a在线 | 91在线精品一区二区 | 五月激情六月婷婷 | 成人综合在线观看 |