【題目】對于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( )
A.y值隨x值的增大而增大
B.它的圖象與x軸交點坐標(biāo)為(0,1)
C.它的圖象必經(jīng)過點(﹣1,3)
D.它的圖象經(jīng)過第一、二、三象限
【答案】C
【解析】
根據(jù)一次函數(shù)的圖象和性質(zhì),以及一次函數(shù)圖象上點的坐標(biāo)特征,一次函數(shù)解析式系數(shù)的幾何意義,逐一判斷選項,即可.
∵k=﹣2<0,
∴y值隨x值的增大而減小,結(jié)論A不符合題意;
∵當(dāng)y=0時,﹣2x+1=0,解得:x=,
∴函數(shù)y=﹣2x+1的圖象與x軸交點坐標(biāo)為(,0),結(jié)論B不符合題意;
∵當(dāng)x=﹣1時,y=﹣2x+1=3,
∴函數(shù)y=﹣2x+1的圖象必經(jīng)過點(﹣1,3),結(jié)論C符合題意;
∵k=﹣2<0,b=1>0,
∴函數(shù)y=﹣2x+1的圖象經(jīng)過第一、二、四象限,結(jié)論D不符合題意.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA⊥OB,AB⊥x軸于C,點A(,1)在反比例函數(shù)y=
的圖象上.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)在x軸上存在一點P,使S△AOP= S△AOB, 求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象分別與
軸和
軸交于
,
兩點,且與正比例函數(shù)
的圖象交于點
.
(1)求的值;
(2)求正比例函數(shù)的表達(dá)式;
(3)點是一次函數(shù)圖象上的一點,且
的面積是3,求點
的坐標(biāo);
(4)在軸上是否存在點
,使
的值最小?若存在,求出點
的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt △ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞D點旋轉(zhuǎn),它的兩邊分別交AC、CB的延長線于E、F.下面結(jié)論一定成立的是______.(填序號)
①CD=AB;②DE=DF;③S△DEF=2S△CEF;④S△DEF-S△CEF=S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,AB=AC,∠BAC=90°
(1)如圖1,D,E是等腰Rt△ABC斜邊BC上兩動點,且∠DAE=45°,將△ABE繞點A逆時針旋轉(zhuǎn)90后,得到△AFC,連接DF
①求證:△AED≌△AFD;
②當(dāng)BE=3,CE=7時,求DE的長;
(2)如圖2,點D是等腰Rt△ABC斜邊BC所在直線上的一動點,連接AD,以點A為直角頂點作等腰Rt△ADE,當(dāng)BD=3,BC=9時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,兩家商店搞促銷活動,甲店:買一只茶壺贈一只茶杯;乙店:按定價的9折優(yōu)惠,某顧客需購買茶壺4只,茶杯若干只(不少于4只).
(1)設(shè)購買茶杯數(shù)為(只),在甲店購買的付款為
(元),在乙店購買的付款數(shù)為
(元),分別寫出在兩家商店購物的付款數(shù)與茶杯數(shù)
之間的關(guān)系式;
(2)當(dāng)購買多少只茶杯時,兩家商店的花費(fèi)相同?
(3)當(dāng)購買20只茶杯時,去哪家商店購物比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,點D在△ABC外部,且∠ACB+∠ADB=180°,連接AB、CD.
(1)如圖1,當(dāng)∠ACB=90°時,則∠ADC=______°.
(2)如圖2,當(dāng)∠ACB=60°時,求證:DC平分∠ADB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com