【題目】已知:如圖,在△ABC中,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:四邊形AECF是菱形;
(2)若AD=3,AE=5,則求菱形AECF的面積.
【答案】(1)見解析;(2)菱形AECF的面積為24.
【解析】分析:(1)首先利用AAS證明≌
,進而得到
,于是得打四邊形
是平行四邊形,再根據對角線互相垂直的平行四邊形是菱形即可得到結論;
(2)首先利用勾股定理求出的長,再利用對角線乘積的一半求出菱形的面積.
詳解:證明:(1)∵CF∥AB,
∴∠DCF=∠DAE,
∵PQ垂直平分AC,
∴CD=AD,
在△CDF和△AED中
∵
∴△CDF≌△AED,
∴AE=CF,
∴四邊形AECF是平行四邊形,
∵PQ垂平分AC,
∴AE=CE,
∴四邊形AECF是菱形;
(2)∵四邊形AECF是菱形,
∴△ADE是直角三角形,
∵AD=3,AE=5,
∴DE=4,
∴AC=2AD=6,EF=2DE=8,
∴菱形AECF的面積為
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y=的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數與反比例函數的表達式;
(2)根據所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C在數軸上表示的數分別為a、b、c,且OA+OB=OC,則下列結論中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正確的個數有 ( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,
(1)求點C的坐標及直線l2的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形繞點
按逆時針方向旋轉
后得到圖形
.請回答下列問題:
(1)點的對應點是點______,線段
的對應線段是______,
的對應角是______;
(2)旋轉中心是______,的大小是______,四邊形
的形狀是______;
(3)與線段相等的線段有______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了弘揚中華傳統文化,了解學生整體閱讀能力,組織全校的1000名學生進行一次閱讀理解大賽.從中抽取部分學生的成績進行統計分析,根據測試成績繪制了頻數分布表和頻數分布直方圖:
分組/分 | 頻數 | 頻率 |
50≤x<60 | 6 | 0.12 |
60≤x<70 | 0.28 | |
70≤x<80 | 16 | 0.32 |
80≤x<90 | 10 | 0.20 |
90≤x≤100 | 4 | 0.08 |
(1)頻數分布表中的 ;
(2)將上面的頻數分布直方圖補充完整;
(3)如果成績達到90及90分以上者為優秀,可推薦參加決賽,估計該校進入決賽的學生大約有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】知識是用來為人類服務的,我們應該把它們用于有意義的方面.下面就兩個情景請你作出評判.
情景一:從教室到圖書館,總有少數同學不走人行道而橫穿草坪,這是為什么呢?試用所學數學知識來說明這個問題.
情景二:A、B是河流l兩旁的兩個村莊,現要在河邊修一個抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請在圖中表示出抽水站點P的位置,并說明你的理由:
你贊同以上哪種做法?你認為應用數學知識為人類服務時應注意什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了綠化環境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的扇形統計圖和不完整的條形統計圖:
請根據以上統計圖中的信息解答下列問題.
(1)植樹3株的人數為 ;
(2)扇形統計圖中植樹為1株的扇形圓心角的度數為 ;
(3)該班同學植樹株數的中位數是
(4)小明以下方法計算出該班同學平均植樹的株數是:(1+2+3+4+5)÷5=3(株),根據你所學的統計知識
判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結果
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com