日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知:△ABC中,AB<BC,AC的中點(diǎn)為M,MN⊥AC交∠ABC的角平分線于N.
(1)如圖1,若∠ABC=60°,求證:BA+BC=
3
BN;
(2)如圖2,若∠ABC=120°,則BA、BC、BN之間滿足什么關(guān)系式,并對(duì)你得出的結(jié)論給予證明.
分析:(1)連接AN、CN,過(guò)點(diǎn)N作NE⊥AB于點(diǎn)E,NF⊥BC于點(diǎn)F,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AN=NC,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得NE=NF,然后利用“HL”證明Rt△ANE和Rt△CNF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=CF,然后求出BA+BC=2BF,在Rt△BNF中,利用∠NBF的余弦值列式整理即可得證;
(2)連接AN、CN,在BC上截取BE=AB,然后利用“邊角邊”證明△ABN和△ABE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得NA=NE,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得NA=NC,從而得到NE=NC,過(guò)點(diǎn)N作NF⊥BC于點(diǎn)F,根據(jù)等腰三角形三線合一的性質(zhì)可得EF=
1
2
EC,然后表示出BF,在Rt△BFN中,利用∠NBF的余弦值列式整理即可得解.
解答: (1)證明:連接AN、CN,過(guò)點(diǎn)N作NE⊥AB于點(diǎn)E,NF⊥BC于點(diǎn)F,
∵BN是∠ABC的角平分線,
∴NE=NF,
∵AC的中點(diǎn)為M,MN⊥AC,
∴AN=NC,
在Rt△ANE和Rt△CNF中,
BN=BN
NE=NF
,
∴Rt△ANE≌Rt△CNF(HL),
∴AE=CF,
∴BA+BC=BE-AE+BF+CF=2BF,
∵∠ABC=60°,BN平分∠ABC,
∴∠NBF=
1
2
×60°=30°,
∴cos30°=
BF
BN
=
1
2
(BA+BC)
BN
=
3
2
,
∴BA+BC=
3
BN;

(2)連接AN、CN,在BC上截取BE=AB,
∵BN是∠ABC的角平分線,
∴∠ABN=∠EBN,
在△ABN和△ABE中,
BN=BN
∠ABN=∠EBN
BE=AB

∴△ABN≌△ABE(SAS),
∴NA=NE,
∵AC的中點(diǎn)為M,MN⊥AC,
∴NA=NC,
∴NE=NC,
過(guò)點(diǎn)N作NF⊥BC于點(diǎn)F,
則EF=
1
2
EC=
1
2
(BC-BA),
∴BF=BE+EF=BA+
1
2
(BC-BA)=
1
2
(BC+BA),
∵∠ABC=120°,BN平分∠ABC,
∴∠NBF=
1
2
×120°=60°,
∴cos60°=
BF
BN
=
1
2
(BC+BA)
BN
=
1
2

∴BA+BC=BN.
點(diǎn)評(píng):本題考查了角平分線的性質(zhì),全等三角形的判定與性質(zhì),線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì)以及銳角三角函數(shù),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,現(xiàn)將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點(diǎn)P,連接CP.
精英家教網(wǎng)
(1)當(dāng)CD⊥AB時(shí)(如圖1),求證:PC平分∠EPA;
(2)當(dāng)點(diǎn)P在邊AB上時(shí)(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉(zhuǎn)過(guò)程中,連接BE,當(dāng)△BCE的面積為
25
4
3
時(shí),求∠BPE的度數(shù)及PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點(diǎn)B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個(gè)數(shù)有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,有一個(gè)角為60°,S△ABC=10
3
,周長(zhǎng)為20,則三邊長(zhǎng)分別為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上的點(diǎn),以AE為直徑的⊙O與過(guò)B點(diǎn)的⊙P精英家教網(wǎng)外切于點(diǎn)D,若AC和BC邊的長(zhǎng)是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
(1)求△ABC三邊的長(zhǎng);
(2)求證:BC是⊙P的切線;
(3)若⊙O的半徑為3,求⊙P的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 在线看av网址 | 日韩欧美在线中文字幕 | 九九热在线视频 | 亚洲精品久久久 | 亚洲va一区二区 | 国产精品成人网 | 欧美精品1区2区3区 亚洲区在线 | 日本免费一区二区视频 | 午夜高清免费视频 | 国产精品亚洲一区二区三区 | 国产一区二区三区高清 | 亚洲一级黄色 | 欧美亚洲综合久久 | 国产精品久久久久久吹潮 | 91精品一区二区 | 99精品欧美一区二区三区 | 日韩精品久久一区二区三区 | 日本免费在线观看 | 一区二区三区国产 | av一区二区三区 | 国产一在线 | 久久第一区 | 热久久久| 午夜精品久久久久久久99黑人 | 青草视频在线观看视频 | 亚洲天天做 | 日本一区二区三区在线播放 | 美女久久精品 | 日韩欧美国产成人一区二区 | 国产一二三视频 | 91在线视频免费观看 | 欧美在线视频一区二区 | 亚洲九九九 | 久久国产精品一区二区 | 91国产精品 | 国内a∨免费播放 | www.国产 | 色综合久久久久 | 欧美激情在线狂野欧美精品 | 国产欧美精品一区二区三区四区 | 日韩精品www|