日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

(本小題滿分12分)
如圖,RtΔABC中,∠ACB=90°,AC=4,BA=5,點PAC上的動點(P不與A、C重合)PQAB,垂足為Q.設PC=xPQ= y

【小題1】⑴求yx的函數關系式;
【小題2】⑵試確定此RtΔABC內切圓I的半徑,并探求x為何值時,直線PQ與這個內切圓I相切?
【小題3】⑶若0<x<1,試判斷以P為圓心,半徑為y的圓與⊙I能否相內切,若能求出相應的x的值,若不能,請說明理由.


【小題1】⑴如圖1,PQ=y
 ∵∠A=∠A,∠ACB=∠AQP=90°
 ∴RtΔAQP∽ΔRtΔACB,
∴PQ∶BC=AP∶AB
依題意可得:BC=3,AP=4-x
  
化簡得:
【小題2】⑵假設直線PQ與這個內切圓I能相切,令切點為M,如圖,
可知四邊形IMQN也是正方形,
則有PM=PEMQ=IN=1,
PC=PQ
x=y
  
解之,得x=.
【小題3】⑶當⊙P與⊙I內切時,如圖3,
根據勾股定理得:
即  
代入得

解之得.

解析

練習冊系列答案
相關習題

科目:初中數學 來源:2011-2012學年九年級第二次模擬考試數學卷 題型:解答題

(本小題滿分12分)

如圖,反比例函數的圖象經過A、B兩點,根據圖中信息解答下列問題:

1.(1)寫出A點的坐標;

2.(2)求反比例函數的解析式;

3.(3)若點A繞坐標原點O旋轉90°后得到點C,請寫出點C的坐標;并求出直線BC的解析式.

 

查看答案和解析>>

科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯考數學卷 題型:解答題

(本小題滿分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉,當DF邊與AB邊重合時,旋轉中止。不考慮旋轉開始和結束時重合的情況,設DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。

1.(1)問:始終與△AGC相似的三角形有               

2.(2)設CG=x,BH=y,求y關于x的函數關系式(只要求根據2的情況說明理由);

3.(3)問:當x為何值時,△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯考數學卷 題型:解答題

(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      

 

查看答案和解析>>

科目:初中數學 來源:2011-2012年江蘇GSJY八年級第二次學情調研考試數學卷 題型:解答題

  (本小題滿分12分)

 1. (1)觀察發現

    如(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最小.

    做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P

    再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.

做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實踐運用

   如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

科目:初中數學 來源:2014屆湖北省孝感市七年級下學期期中考試數學卷 題型:解答題

.(本小題滿分12分)

如圖,AD為△ABC的中線,BE為△ABD的中線。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數;

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区免费 | 成人在线免费av | 亚洲视频在线网站 | 国产亚洲精品久 | 中文字幕亚洲视频 | 欧美一区二区三区免费在线观看 | 一区二区三区精品视频 | 四虎永久在线 | 可以免费观看的av | 欧美激情一区二区 | 97精品视频在线观看 | 国产免费拔擦拔擦8x高清在线人 | 33eee在线视频免费观看 | 欲色av| 亚洲欧美视频 | 天天干干| 在线视频亚洲 | 日韩av一区在线观看 | 韩国三级中文字幕hd久久精品 | 99热日本| 国产精品99久久久久久久vr | 久久国内免费视频 | 免费日韩 | 免费国产网站 | 欧洲一区二区在线观看 | 精品亚洲视频在线 | 成人国产在线观看 | 日韩在线高清视频 | 国产激情在线视频 | 久久久久久久99精品免费观看 | 午夜影视av | 成人日韩 | 久久91 | 奇米色777欧美一区二区 | 免费一区二区三区视频在线 | 日韩精品在线播放 | 一区二区三区视频免费在线观看 | 国产福利电影在线观看 | 久久久久女教师免费一区 | 亚洲电影一区二区 | 亚洲视频一区二区 |