(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC即AD∥GC,
∴∠G=∠AEF=60°,
由折疊可知:∠CED=∠CEG,而∠GED=180°-∠AEF=120°
∴∠GEC=∠CED=

∠GED=60°即∠G=∠GEC=60°,
∴△CEG是等邊三角形;
(2)解:∵四邊形ABCD是矩形∴∠A=∠D=90°,AB=CD,
由(1)可知∠AEF=∠CED=60°,∴∠AFE=∠DCE=30°,
∴EF=2AE,CE=2DE.設AE=x,則EF=2x,ED=EF=2x,
∴AD=x+2x=3,CE=4x,解得,x=1,DE=2,CE=4,
在Rt△CDE中,CD=

∴AB=2

.
分析:(1)由折疊可知∠DEC=∠FEC,已知∠AEF=60°,可知∠DEC=∠FEC=60°,由AD∥GC,可知∠G=∠AEF=60°,故有∠G=∠FEC=60°,所以△CEG是等邊三角形;
(2)在Rt△AEF中,∠AEF=60°,設AE=x,則EF=2x,由折疊的性質得ED=EF=2x,根據AE+ED=AD,列方程求x,在Rt△CDE中,DE=2,∠DEC=60°,可得CE=2DE=4,利用勾股定理可求CD,即AB的長.
點評:本題考查了折疊的性質及其運用.關鍵是由折疊求相等的線段,相等的角,把問題集中在直角三角形中使用勾股定理.