日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

【答案】分析:(1)根據B點的坐標以及矩形的面積可以求出矩形的四個頂點的坐標,根據待定系數法就可以求出拋物線的解析式;
(2)①過點B作BN⊥PS,垂足為N,可以設P的坐標是(a,a2+1),根據勾股定理就可以用a表示出PB=PS的長,由此可以證明;
②判斷△SBR的形狀,根據①同理可知BQ=QR,根據等邊對等角就可以證明∠SBR=90度,則△SBR為直角三角形;
③若以P、S、M為頂點的三角形與以Q、M、R為頂點的三角形相似,有△PSM∽△MRQ和△PSM∽△QRM兩種情況,根據相似三角形的對應邊的比相等就可以求出.
解答:解:(1)方法一:
∵B點坐標為(0.2),
∴OB=2,
∵矩形CDEF面積為8,
∴CF=4.
∴C點坐標為(-2,2).F點坐標為(2,2).
設拋物線的解析式為y=ax2+bx+c.
其過三點A(0,1),C(-2.2),F(2,2).

解這個方程組,得a=,b=0,c=1,
∴此拋物線的解析式為y=x2+1.(3分)
方法二:
∵B點坐標為(0.2),
∴OB=2,
∵矩形CDEF面積為8,
∴CF=4.
∴C點坐標為(-2,2),
根據題意可設拋物線解析式為y=ax2+c.
其過點A(0,1)和C(-2.2)

解這個方程組,得a=,c=1
此拋物線解析式為y=x2+1.

(2)①證明:如圖(2)過點B作BN⊥PS,垂足為N.
∵P點在拋物線y=x2+1上.可設P點坐標為(a,a2+1).
∴PS=a2+1,OB=NS=2,BN=-a.
∴PN=PS-NS=
在Rt△PNB中.
PB2=PN2+BN2=(a2-1)2+a2=(a2+1)2
∴PB=PS=.(6分)
②根據①同理可知BQ=QR.
∴∠1=∠2,
又∵∠1=∠3,
∴∠2=∠3,
同理∠SBP=∠5(7分)
∴2∠5+2∠3=180°
∴∠5+∠3=90°
∴∠SBR=90度.
∴△SBR為直角三角形.(8分)
③方法一:如圖(3)作QN⊥PS,
設PS=b,QR=c,
∵由①知PS=PB=b.QR=QB=c,PQ=b+c.PN=b-c.
∴QN2=SR2=(b+c)2-(b-c)2
.(9分)
假設存在點M.且MS=x,則MR=
若使△PSM∽△MRQ,
則有
即x2-2x+bc=0

∴SR=2
∴M為SR的中點.(11分)
若使△PSM∽△QRM,
則有


∴M點即為原點O.
綜上所述,當點M為SR的中點時.△PSM∽△MRQ;
當點M為原點時,△PSM∽△MRQ.(13分)
方法二:
若以P、S、M為頂點的三角形與以Q、M、R為頂點的三角形相似,
∵∠PSM=∠MRQ=90°,
∴有△PSM∽△MRQ和△PSM∽△QRM兩種情況.
當△PSM∽△MRQ時.∠SPM=∠RMQ,∠SMP=∠RQM.
由直角三角形兩銳角互余性質.知∠PMS+∠QMR=90度.
∴∠PMQ=90度.(9分)
取PQ中點為T.連接MT.則MT=PQ=(QR+PS).(10分)
∴MN為直角梯形SRQP的中位線,
∴點M為SR的中點(11分)
=1
當△PSM∽△QRM時,
∴QB=BP
∵PS∥OB∥QR
∴點M為原點O.
綜上所述,當點M為SR的中點時,△PSM∽△MRQ;
當點M為原點時,△PSM∽△QRM.(13分)
點評:本題主要考查了待定系數法求函數解析式,以及相似三角形的對應邊的比相等.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年廣東省梅州市中考數學模擬試卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省江陵縣中考數學模擬訓練卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省深圳市中考數學全真模擬試卷(二)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 美女1区2区3区 | 日韩视频在线观看 | 欧美国产激情 | 国产亚洲欧美一区 | 狠狠干av | 国产一区在线不卡 | 亚洲天堂在线视频播放 | 欧洲另类二三四区 | 国产精品久久久久久福利一牛影视 | 在线免费毛片 | 久久精品免费 | 电影91久久久 | 亚洲精品一二三 | 毛片毛片毛片 | 国产精品久久久久久久久久东京 | 日本中文字幕一区二区 | 国产亚洲一区二区不卡 | 久久精品免费视频播放 | 国产精品一区免费在线观看 | 国产精品成人一区二区三区夜夜夜 | 中文字幕免费看 | 午夜激情男女 | 国产一区二区在线免费观看 | 国产一级在线 | 久久午夜电影 | 超碰97免费在线 | 青青av| 色吧av | 日韩精品一区二区三区在线 | 太久视频网站 | 国产毛片在线 | 中文字幕欧美日韩一区 | 国产精品日韩欧美一区二区三区 | 青青久视频 | 日本三级网 | 精品亚洲永久免费精品 | 国产一在线 | 午夜精品一区二区三区在线播放 | 日韩一区二区在线播放 | 精品一二三区视频 | 国产精品亚洲第一区在线暖暖韩国 |