【題目】已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)求證:AB∥CD;
(2)試探究∠2與∠3的數量關系.
【答案】
(1)證明:∵BE、DE平分∠ABD、∠BDC,
∴∠1= ∠ABD,∠2=
∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁內角互補,兩直線平行)
(2)解:∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
【解析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根據同旁內角互補,可得兩直線平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,將等角代換,即可得出∠3與∠2的數量關系.
【考點精析】關于本題考查的角的平分線和平行線的判定,需要了解從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】某商場銷售A,B兩種型號計算器,A型號計算器的進貨價格為每臺30元,B型號計算器的進貨價格為每臺40元.商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)分別求商場銷售A,B兩種型號計算器每臺的銷售價格.
(2)商場準備用不多于2 500元的資金購進A、B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?【利潤=銷售價格﹣進貨價格】
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點P落在∠AOB的平分線OC的任意一點上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC,∠ABC=∠ACB。
(1)尺規作圖:過頂點A作△ABC的角平分線AD;(不寫作法,保留作圖痕跡)
(2)在AD上任取一點E(不與點A、D重合),連結BE,CE,求證:EB=EC。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學八年級共有900名學生,為了解該校八年級學生每天做家庭作業所用的時間,從該校八年級學生中隨機抽取100名學生進行調查,此次調查的樣本容量是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了豐富校園文化,舉行初中生書法大賽,決賽設置了7個獲獎名額,共有13名選手進入決賽,選手決賽得分均不相同,小穎知道自己的比賽分數后,要判斷自己能否獲獎,需要知道這13名同學成績的( )
A.眾數B.中位數C.平均數D.方差
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2)
(1)寫出點A、B的坐標:A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點坐標A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com