日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖所示,已知正方形ABCD邊長為4,點M、N分別在邊BC、CD上(點M、N都不與點B、C、D重合),且AM⊥MN.
(1)求證:Rt△ABM∽Rt△MCN;
(2)求證:△AMN不可能是等腰直角三角形;
(3)探究:當BM取何值時,以A,M,N為頂點的三角形與△ABM相似?并說明理由.

(1)證明:∵四邊形ABCD為正方形,
∴∠B=∠C=90°,
又∵AM⊥MN,
∴∠AMN=90°,
∴∠AMB+∠NMC=90°,
而∠AMB+∠BAM=90°,
∴∠BAM=∠NMC,
∴Rt△ABM∽Rt△MCN;

(2)證明:若△AMN是等腰直角三角形時,AM=MN.
∵由(1)知,Rt△ABM∽Rt△MCN,
==1,
∴AB=MC,
∴點M與點B重合,點N與點C重合,這與已知條件“點M、N都不與點B、C、D重合”相矛盾,
∴△AMN不可能是等腰直角三角形;

(3)解:∵∠B=∠AMN=90°,
∴要使Rt△ABM∽Rt△AMN,必須有=,即=
∵Rt△ABM∽Rt△MCN,
=
∴BM=MC,
∴當點M運動到BC的中點時,Rt△ABM∽Rt△AMN,此時BM=2.
分析:(1)根據正方形的性質得∠B=∠C=90°,∠AMB+∠BAM=90°,又∠AMN=90°,則∠AMB+∠NMC=90°,得到∠BAM=∠NMC,根據相似三角形的判定即可得到結論;
(2)若△AMN是等腰直角三角形時,相似Rt△ABM與Rt△MCN的對應邊不成比例;
(3)①已知了這兩個三角形中相等的對應角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么兩組直角邊就應該對應成比例,即AM:MN=AB:BM,根據(1)的相似三角形可得出
AM:MN=AB:MC,因此BM=MC,M是BC的中點.即BM=2.
②同理,當
點評:本題考查了相似三角形的判定與性質:有兩組內角分別對應相等的兩三角形相似;相似三角形對應邊的比相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

33、如圖所示,已知正方形ABCD,延長CB至E,連接AE,過點A作AF⊥AE交DC于F.
求證:△ADF≌△ABE.

查看答案和解析>>

科目:初中數學 來源: 題型:

30、如圖所示,已知正方形ABCD,E為BC上任意一點,延長AB至F,使BF=BE,AE的延長線交CF于G,
試說明:(1)AE=CF;(2)AG⊥CF.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•尤溪縣質檢)如圖所示,已知正方形ABCD的邊長為4,E是BC邊上的一個動點,AE⊥EF,EF交DC于點F,設BE=x,FC=y,則當點E從點B運動到點C時,y關于x的函數圖象是
(填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知正方形ABCD的面積是8平方厘米,正方形EFGH的面積是62平方厘米,BC落在EH上,△ACG的面積是4.9平方厘米,則△ABE的面積是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知正方形OABC的面積為9,點B在函數y=
k
x
(k>0,x>0)
的圖象上,點P(m,n)(6≤m≤9)是函數y=
k
x
(k>0,x>0)
的圖象上動點,過點P分別作x軸、y軸的垂線,垂足分別為E、F,若設矩形OEPF和正方形OABC不重合的兩部分的面積和為S.
(1)求B點坐標和k的值;
(2)寫出S關于m的函數關系和S的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩国产精品视频 | 色综合久久伊人 | 久久99精品久久久久久久青青日本 | 亚洲精品一区中文字幕乱码 | 自拍在线| 欧美亚洲视频在线观看 | 国产视频久久久久 | 亚洲一区二区三区四区五区午夜 | 久久se精品一区精品二区 | 国产精品久久久久久久久动漫 | 色综久久 | 日本亚洲国产一区二区三区 | 日韩欧美精品一区 | 黄色av网站免费看 | 黄色网址免费在线 | 久久这里只有精品23 | 日本精品一区二区三区视频 | 亚洲色图综合网 | 91av在线不卡 | 国产精品自产拍在线观看桃花 | 国产在线观看91一区二区三区 | 亚洲午夜免费视频 | 久久精品美女视频 | 一区二区三区国产 | 日韩中文在线视频 | 国产在线观看高清 | 五月婷婷中文 | 亚洲成人精品影视 | 日韩一区二区中文字幕 | 亚洲国产精品久久久男人的天堂 | 亚洲怡红院在线 | www在线看片 | 一区免费看 | 欧美日韩激情四射 | 免费激情网站 | 日韩国产在线观看 | 羞羞视频网站 | 日韩福利视频 | 久久精品福利 | 99久久综合狠狠综合久久 | 日韩精品www|