【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c經過點A(2,0),B(0,2),點P是拋物線上一動點,連接BP,OP.
(1)求這條拋物線的解析式;
(2)若△BOP是以BO為底邊的等腰三角形,求點P的坐標.
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖,試確定線段AE與DB的大小關系,并說明理由”.
(1)當點E為AB的中點時,如圖1,確定線段AE與DB的大小關系,直接寫出結論:AE DB
(填“>”,“<”或“=”).
(2)證明你得出的以上(1),如圖2,過點E作EF∥BC,交AC于點F.
(3)在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED = EC.若△ABC的邊長為1,AE = 2,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,對于點
,我們把點
叫做點
的衍生點.已知點
的衍生點為
,點
的衍生點為
,點
的衍生點為
這樣依次得到點
若點
的坐標為
,若點
在第四象限,則
范圍分別為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC , BD相交于點O , 且AC=6cm,BD=8cm,動點P , Q分別從點B , D同時出發,運動速度均為1cm/s,點P沿B→C→D運動,到點D停止,點Q沿D→O→B運動,到點O停止1s后繼續運動,到點B停止,連接AP , AQ , PQ . 設△APQ的面積為y(cm2)(這里規定:線段是面積0的幾何圖形),點P的運動時間為x(s).
(1)填空:AB=cm,AB與CD之間的距離為cm;
(2)當4≤x≤10時,求y與x之間的函數解析式;
(3)直接寫出在整個運動過程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在銳角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于點D,點M,N分別是BD和BC邊上的動點,則MN+MC的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數;
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數;若不存在,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com