日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
在平面直角坐標系中,點0是坐標原點,四邊形ABCD為菱形,AB邊在x軸上,點D在y軸上,點A的坐標是(-6,0),AB=10.
(1)求點C的坐標:
(2)連接BD,點P是線段CD上一動點(點P不與C、D兩點重合),過點P作PE∥BC交BD于點E,過點B作BQ⊥PE交PE的延長線于點Q.設PC的長為x,PQ的長為y,求y與x之間的函數關系式(直接寫出自變量x的取值范圍);
(3)在(2)的條件下,連接AQ、AE,當x為何值時,S△BQE+S△AQE=
45
S△DEP?并判斷此時以點P為圓心,以5為半徑的⊙P與直線BC的位置關系,請說明理由.
精英家教網
分析:(1)過點C作CN⊥x軸,垂足為N,求得CN、ON的長,即可得出坐標;
(2)過點P作PH⊥BC,垂足為H,易證△PHC∽△DOA,可得CH=
3
5
x,BH=10-
3
5
x;然后證明四邊形PQBH為矩形,則PQ=BH,即可求得;
(3)過點P作PH′⊥BC,垂足為H′,過點D作DG⊥PQ于點G,過點A作AF⊥PQ交PQ的延長線于點F,用x分別表示出EQ、BQ、AF的值和PE、DG的值,然后,根據S△BOE+S△AQE=
4
5
S△DEP,可求出x的值,最后根據PH′的值與x的值比較,即可得出其位置關系;
解答:精英家教網解:(1)如圖1,過點C作CN⊥x軸,垂足為N,則四邊形DONC為矩形,
∴ON=CD
∵四邊形ABCD是菱形,AB=10,
∴AB=BC=CD=AD=10,
∴ON=10,
∵A(-6,0),
∴OA=6,OD=
AD2-AO2
=
102-62
=8,
∴點C的坐標為(10,8);

(2)如圖2,過點P作PH⊥BC,垂足為H,則∠PHC=∠AOD=90°,
∵四邊形ABCD是菱形,
∴∠PCB=∠DAO,
∴△PHC∽△DOA,精英家教網
CH
AO
=
PH
DO
=
PC
AD

CH
6
=
PH
8
=
x
10

∴PH=
4
5
x,CH=
3
5
x,
∴BH=10-
3
5
x,
∵PE∥BC,BQ⊥PQ,
∴∠PQB=∠QBC=∠PHB=90°,
∴四邊形PQBH為矩形,
∴PQ=BH=10-
3
5
x,
∴y=10-
3
5
x(0<x<10);

(3)如圖3,過點P作PH′⊥BC,垂足為H′,則四邊形PQBH′是矩形,
∴BQ=PH′=
4
5
x,
∵PE∥BC,
∴∠PED=∠CBD,
∵CD=CB,
∴∠CBD=∠CDB,精英家教網
∴∠CDB=∠PED,
∴PE=PD=10-x,QE=PQ-PE=
2
5
x,
過點D作DG⊥PQ于點G,過點A作AF⊥PQ交PQ的延長線于點F,
∴∠DGF=∠AFG=90°,
∵PQ∥BC,
∴PQ∥AD,
∴∠ADG=90°,
∴四邊形AFGD為矩形,
∴AF=DG,
∵PQ∥BC,
∴∠DPG=∠C,
∵∠DGP=∠PH′C=90°,
∴△DGP∽△PH′C,
DP
PC
=
DG
PH′

∴AF=DG=
4
5
(10-x)=8-
4
5
x,
∵S△BQE+S△AQE=
1
2
EQ×BQ+
1
2
EQ×AF,
=
1
2
×
2
5
4
5
x+
1
2
×
2
5
x×(8-
4
5
x)=
8
5
x,
S△DEP=
1
2
PE×DG=
1
2
(10-x)×(8-
4
5
x),
=
2
5
x2-8x+40,
∵S△BQE+S△AQE=
4
5
S△DEP
8
5
x=
4
5
2
5
x2-8x+40),
整理得,x2-25x+100=0,
∴x1=5,x2=20,
∵0<x<10,
∴x2=20不符合題意,舍去,
∴x1=5,
∴x=5時,S△BQE+S△AQE=
4
5
S△DEP
∵PH′=
4
5
x=4<5,
∴⊙P與直線BC相交.
點評:本題考查了菱形、矩形的判定及性質、相似三角形的判定及性質、勾股定理的運用及直線與圓的位置關系,本題考查知識較多,屬綜合性題目,考查了學生對知識的掌握程度及熟練運用所學知識解答題目的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經過A、B、C三點的函數關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數倍)
,k=
2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜精品一区二区三区在线 | 日韩成人在线免费观看 | 欧美大片在线免费观看 | 黄色在线观看网站 | 欧美一区二区 | 一区二区亚洲视频 | 国产91一区 | 日本中文字幕一区 | 99国产精品久久久久老师 | 伊人超碰 | 狠狠插狠狠操 | 国产免费拔擦拔擦8x高清 | 美女h在线观看 | 91啦| 哪里有免费的黄色网址 | 中文字幕成人 | 欧美日本韩国一区二区 | 国产成人 综合 亚洲 | 久久精品国产99国产 | 综合久久网 | 91麻豆产精品久久久久久 | 日韩在线视频免费看 | 永久精品 | 久热精品视频 | 久久精品导航 | 成人国产精品久久久 | 久久99精品久久久久久国产越南 | 亚洲天天做 | 欧美在线观看视频一区二区 | 久久免费视频国产 | 国产高清毛片 | 中文字幕日韩欧美一区二区三区 | 天天爽天天干 | 欧美日韩国产综合在线 | 999精品在线| 中文字幕在线视频免费观看 | 色综合网址 | 国产精品久久嫩一区二区免费 | 在线黄色av | 久久久久亚洲 | 91欧美在线 |