【題目】如圖,燈塔A周圍1000米水域內有礁石,一艦艇由西向東航行,在O處測得燈塔A在北偏東74°方向線上,這時O、A相距4200米,如果不改變航向,此艦艇是否有觸礁的危險?(指定數學課使用科學計算器的地區的考生須使用計算器計算.以下數據供計算器未進入考場的地區的考生選用:cos74°=0.2756,sin74°=0.9613,cot74°=0.2867,tan74°=3.487)
科目:初中數學 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作半圓⊙O與邊BC交于點D,過D作半圓的切線與邊AC交于點E,過E作EF∥AB,與BC交于點F.若AB=20,OF=7.5,則CD的長為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設直線y=kx+6和直線y=(k+1)x+6(k是正整數)及x軸圍成的三角形面積為Sk(k=1,2,3,…,8),則S1+S2+S3+…+S8的值是( )
A. B.
C. 16D. 14
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,對角線AC,BD交于點O,點P在線段BC上(不含點B),∠BPE=∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.
(1) 當點P與點C重合時(如圖①).求證:△BOG≌△POE;(4分)
(2)通過觀察、測量、猜想:= ,并結合圖②證明你的猜想;(5分)
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求的值.(用含α的式子表示)(5分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某課桌生產廠家研究發現,傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據這一研究,廠家決定將水平桌面做成可調節角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉,在點C處安裝一根可旋轉的支撐臂CD,AC=30 cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當∠BAC=12°時,求AD的長.(結果保留根號)
(參考數據:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。
(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明的書包里只放了A4大小的試卷共4張,其中語文1張、數學2張、英語1張
若隨機地從書包中抽出2張,求抽出的試卷中有英語試卷的概率.
若隨機地從書包中抽出3張,抽出的試卷中有英語試卷的概率為______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在對角線BD上,EF∥AB交AD于點F,連接BF.
(1)如圖1,若AB=4,DE=,求BF的長;
(2)如圖2.連接AE,交BF于點H,若DF=HF=2,求線段AB的長;
(3)如圖3,連接BF,AB=3,設EF=x,△BEF的面積為S,請用x的表達式表示S,并求出S的最大值;當S取得最大值時,連接CE,線段DB繞點D順時針旋轉30°得到線段DJ,DJ與CE交于點K,連接CJ,求證:CJ⊥CE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點,與y軸交于點C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標;
(3)在(2)的條件下,點Q是x軸上的一個動點,點N是坐標平面內的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com