【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為﹣
其中正確的結(jié)論個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:
由圖象開口向下,可知a<0,
與y軸的交點(diǎn)在x軸的下方,可知c<0,
又對稱軸方程為x=2,所以﹣ >0,所以b>0,
∴abc>0,故①正確;
由圖象可知當(dāng)x=3時(shí),y>0,
∴9a+3b+c>0,故②錯(cuò)誤;
由圖象可知OA<1,
∵OA=OC,
∴OC<1,即﹣c<1,
∴c>﹣1,故③正確;
假設(shè)方程的一個(gè)根為x=﹣ ,把x=﹣
代入方程可得
﹣
+c=0,
整理可得ac﹣b+1=0,
兩邊同時(shí)乘c可得ac2﹣bc+c=0,
即方程有一個(gè)根為x=﹣c,
由②可知﹣c=OA,而當(dāng)x=OA是方程的根,
∴x=﹣c是方程的根,即假設(shè)成立,故④正確;
綜上可知正確的結(jié)論有三個(gè),
故答案為:C.
拋物線開口由a決定,9a+3b+c可由x=3時(shí)的函數(shù)值看出,由OA=OC可知OA=-c,由圖像知ax2+bx+c=0(a≠0)有一個(gè)根為-c,由根與系數(shù)關(guān)系得-cx2=
,另一個(gè)根為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= 的圖象經(jīng)過點(diǎn)(﹣
,2),則函數(shù)y=kx﹣2的圖象不經(jīng)過第幾象限( )
A.一
B.二
C.三
D.四
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10,AD=16,∠A=60°,P是射線AD上一點(diǎn),連接PB,沿PB將△APB折疊,得到△A′PB.
(1)如圖2所示,當(dāng)PA′⊥BC時(shí),求線段PA的長度.
(2)當(dāng)∠DPA′=10°時(shí),求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號召,幸福商場用3300元購進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場共計(jì)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________________ ),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,
分別為邊
的中點(diǎn),
是對角線,過點(diǎn)
作
交
的延長線于點(diǎn)
.
(1)求證:.
(2)若,
①求證:四邊形是菱形.
②當(dāng)時(shí),求四邊形
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,LA,LB分別表示A步行與B騎車在同一路上行駛的路程y(千米)與時(shí)間x(小時(shí))的關(guān)系.根據(jù)圖象,回答下列問題:
(1)B出發(fā)時(shí)與A相距 千米.
(2)B騎車一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí).
(3)B出發(fā)后 小時(shí)與A相遇.
(4)求出A行走的路程y與時(shí)間x的函數(shù)關(guān)系式.(寫出過程)
(5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度勻速行駛,A,B肯定會(huì)提前相遇.在圖中畫出這種假設(shè)情況下B騎車行駛過程中路程y與時(shí)間x的函數(shù)圖象,在圖中標(biāo)出這個(gè)相遇點(diǎn)P,并回答相遇點(diǎn)P離B的出發(fā)點(diǎn)O相距多少千米.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),四邊形
是菱形,點(diǎn)
的坐標(biāo)為
,點(diǎn)
在
軸的負(fù)半軸上,直線
交
軸于點(diǎn)
,
邊交
軸于點(diǎn)
.
(1)如圖1,求直線的解析式;
(2)如圖2,連接,動(dòng)點(diǎn)
從點(diǎn)
出發(fā),沿線段
方向以1個(gè)單位/秒的速度向終點(diǎn)
勻速運(yùn)動(dòng),設(shè)
的面積為
(
),點(diǎn)
的運(yùn)動(dòng)時(shí)間為
秒,求
與
之間的函數(shù)關(guān)系式,并直接寫出自變量
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com